
Object-Oriented
Programming

Object-Oriented Programming

What is an Object?

An object is some private data and a set of public
operations that can access that data.

The external interface to the object is only through the
operations.

An object is requested to perform one of its operations by
sending it a message telling the object what to do.

The receiver responds to the message by first choosing the
operation that implements the message name, executing
this operation, and then returning control to the caller.

2 - 1

Object-Oriented Programming

What is Object-Oriented
Programming (OOP)?

A code packaging technique.

A top-down design methodology.

A process of creating computer-based objects which
are analogs of the real world.

A modelling approach to programming.

2 - 2

OOP Techniques

Properties of OOP
1) Classes of Objects

2) Messaging

3) Polymorphism

4) Inheritance

5) Dynamic Binding

These basic properties are language independent.
However, in the following sections, specifics are drawn
from Objective-C.

2 - 3

Classes of Objects

1. Classes of Objects
(abstraction and encapsulation)

Abstraction:

An object will be defined as a member of a
class.

A class is an abstraction which describes the
properties shared by a group of similar objects.

An instance of a class is an individual
occurrence of an object.

2 - 4

Classes of Objects

Encapsulation:

A class encapsulates in a single object both data
and procedural abstraction, state and behavior.

Encapsulation is done to separate the user of an
object from its author.

The object is defined by its behavior, the public
operations it can perform. The data remains
private to the object.

Users of these objects can access the object’s
data only using the procedures the object
developer provides.

2 - 5

Classes of Objects

Internal

State

Variables

Brick Wall

Object

method

method

Internal states are called the instance variables.
The functions used to access them are called methods.

2 - 6

Classes of Objects

Example: Apple object

Instance variables: size, color

Methods:
setSize: - sets size to argument passed
size - returns the value of size
grow - increments size by one

color - returns the value of color

2 - 7

Classes of Objects

Apple Object

size

color

setSize:

size

grow

color

Note: there is no setColor: method here, so the
color cannot be changed!

2 - 8

Classes of Objects

Classes and Instances

Actually, there are two types of "objects":

Class Object (or "factory object"):

Contains the definition of the class itself.

Has class methods that it can execute.

Knows how to build new objects belonging to the class.

Class names begin with uppercase letters. (Example:
Apple)

2 - 9

Classes of Objects

Classes and Instances (continued)

Instance of the Class:

An individual occurrence of an object created by a class
method in the class object.

Has instance variables and instance methods.

These are the objects that do work in your program.

Instance names begin with lowercase letters.
(Example: myApple)

2 - 10

Classes of Objects

Example: An Apple class object produces two
instances of its class, myApple and yourApple.

Apple

myApple yourApple

Class

Object

Instances

2 - 11

Classes of Objects

Benefits of Object Classes

- Insulation and protection of data
---> Enhanced reliability

- Transparent changes

- Anthropomorphic behavior: an object "knows how"
to do things when "told" to do so.

2 - 12

Inheritance

2. Messaging

An object can ask another object to perform one of
its methods or actions via a message.

A message statement contains:

1) A reference to the object which is to be called
(the receiver).

2) The name of the method to be executed

3) Any arguments, if required.

2 - 13

Inheritance

Example of Messaging

Declare an object to be in the "Apple" class, and
send a "setSize:" message to it:

Apple *myApple;
.
.

[myApple setSize:5];

target object: myApple

class of target: Apple

message name: setSize:

argument: 5

2 - 14

Inheritance

Messaging vs. Calling

A message is essentially a function call, but the
emphasis is on the data itself rather than the
operation. For example:

Message a stack to push a data value onto itself:

[myStack push:value];

instead of ...

Call a push routine, with a stack and data value as
arguments:

push(myStack,value);

2 - 15

Inheritance

3. Polymorphism

The term polymorphism generally refers to the ability to
take on more than one form.

Operator overloading is a form of polymorphism used in
some conventional programming languages.

In object-oriented languages, a polymorphic object is a
variable which can, during the course of execution, point
to objects of more than one class.

Polymorphic object references allow the programmer to
design at a high level of abstraction.

2 - 16

Inheritance

Examples of Polymorphism

Example: "draw"message

Main program tells all screen objects to "draw"
themselves.

"Line" object does one thing.

"Circle" object does another.

Adding a new object is easy: you provide the "draw"
method with the new object and you don’t change the
original program code!

2 - 17

Inheritance

Example: Send same "grow" message to objects in two
different classes, Apple and Banana:

Apple Object

Banana Object

 -grow

{

 code to grow apple

}

{

 code to grow banana

}

 -grow

[myApple grow];

[myBanana grow];

2 - 18

Inheritance

4. Inheritance

First, as objects in a class:

Objects are always defined as members of a class.

An instance automatically has the instance variables
and methods defined for its class. This is basic
encapsulation.

2 - 19

Inheritance

Inheritance goes further:

A class is also defined as a subclass of some other
class, called its superclass.

A subclass also inherits the instance variables and
methods defined for all of its superclasses.

2 - 20

Inheritance

Sample Inheritance Hierarchy

Classes

Mammals

Humans

Students Teachers

John Sue Dan Peg

Dolphins

Flipper

Instances

2 - 21

Inheritance

Inheritance (continued)

When a class object creates a new instance, the new
object has the instance methods and instance
variables defined for its superclass, its superclass’
superclass, ... to the root Object class (Objective-C).

However, a class object itself inherits only the class
methods from its ancestors.

2 - 22

Inheritance

Inheritance (continued)

A new subclass may add additional instance variables
and methods.

A new subclass may override (redefine) methods
defined in a superclass. The overriding method
may completely replace the superclass’ method, or
may simply add functionality (code) to it.

2 - 23

Inheritance

Example: Apple is subclass of Fruit.

Apple

myApple yourApple

Class: Apple

Subclass of Fruit

Instances

of Apple

Fruit

Class: Fruit

Superclass

of Apple

2 - 24

Inheritance

Apple (in Objective-C)

INHERITS FROM Fruit : Object

INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from Fruit int size;
Declared in Apple char* color;

METHODS
Inherited from Object +alloc { ... } (class method)

-init { ... }
Inherited from Fruit -size { ... }

-setSize: { ... }
Declared in Apple -color { ... }

-grow {...}

2 - 25

Inheritance

Object

Fruit

Apple

isa +alloc {...}

 -init {...}

-size {...}

-setSize: {...}

size

-color {...}

-grow {...}

color

--> If myApple is an instance

of Apple:

isa

size

color

myApple

-init {...}

-size {...}

-setSize: {...}

-color {...}

-grow {...}

myApple Inheritance Hierarchy

2 - 26

Inheritance

Objects in Memory
(Objective-C)

For each class used in a program, the following is in
memory:

Class Object

There is one copy of each class object. It contains the
shareable code for the methods, and other
information describing the structure of the class.
This class object has links up the inheritance chain
to superclass class objects.

2 - 27

Inheritance

Objects in Memory
(continued)

Instances

Each instance appears as simply a data structure
containing that instance’s private copies of the
instance variables. The isa variable points to the
instance’s Class Object where messages will be
directed in search of a method, following the
inheritance chain as necessary.

2 - 28

Inheritance

Example: Class objects and instances in memory.

code

code

code

myApple yourApple
isa
size=7
color=GREEN

isa
size=3
color=RED

Object

Fruit

Apple

-init

-size
-setSize:

-color
-grow

+alloc code
Class

Objects:

Shared

code

of the

two

instances

Private

data

of the

two

instances

2 - 29

Inheritance

Benefits of Inheritance

Inheritance provides an explicit expression of commonality.

We will specify common attributes and services once, and
allow them to be inherited by newly-defined objects.

Almost never start from scratch when building a new object:
It is easy to define a new object that is just like an old
object except for a few minor differences.

Principal factor in enhancing the reusability of objects.

Inheritance is unique to OOP. Languages with objects but
without inheritance are called "object-based," e.g., ADA.

2 - 30

Messaging

Control of Procedures

Classes, inheritance, messaging, and polymorphism
provide one answer to two important questions:

- Where is knowledge about procedures stored?
- What process decides which procedures act?

Two approaches can be taken:

- Action-centered control

- Object-centered control

2 - 31

Control of Procedures

Action-Centered Control

A system exhibits action-centered control when the
system’s procedures know what subprocedures to use
to perform actions.

2 - 32

Control of Procedures

Action-Centered Control of Procedures

To move heavy objects, I use MOVE-SLOW;

to move light objects, I use MOVE-FAST or

MOVE-SLOW.

MOVE-FAST MOVE-SLOW

MOVE-HAND

This approach represents simply calling the right routine for
the job to be done. This is the old way.

2 - 33

Control of Procedures

Object-Centered Control

Here the system’s class descriptions specify how
to deal with objects in their own class.

2 - 34

Control of Procedures

Object-Centered Control of Procedures

MOVE-HAND

Heavy object
class

Light object
class

I am a heavy
object.

To MOVE objects in my
class, use MOVE-SLOW.

To MOVE objects in my class, use
MOVE-FAST or MOVE-SLOW.

I will just tell each
object to MOVE.

I am a light
object.

2 - 35

Dynamic Binding

5. Dynamic Binding
(late binding, runtime binding)

Two approaches to method binding when sending a
message to a variable (pointer to an object):

- static binding: Matching the message to the
method is done by the compiler based on the
static declaration of the type of the variable.

- dynamic binding: The runtime system discovers
the type (class) of the variable based on its
value at the time the message is sent.

2 - 36

Dynamic Binding

Example of Dynamic Binding

Ask a "basket" object for an item, and send a "grow"
message to it, without knowing whether it is "apple" or
"banana".

Basket *myBasket;
id fruitItem; //class unknown
fruitItem = [myBasket item]; //get item
[fruitItem grow]; //tell it to grow

---> Cannot bind (link) to "grow" method of either Apple
or Banana class until runtime. Only then is the class
of the item finally learned based on the value of the
variable fruitItem at that time.

2 - 37

Dynamic Binding

Example: Edit cannot know the class of the object to be
"cut" until runtime.

Text Object

SoundView Object

 -cut

{

 code to cut text

}

{

 code to cut sound

}

 -cut

2 - 38

Dynamic Binding

Benefits of Dynamic Binding

Polymorphism takes on greater meaning and usefulness.

Developers of programs can do rapid prototypes and not
have to anticipate every future type of object.

Programs can be extensible, dynamically loading code
modules at runtime.

The flexibility provided the programmer outweighs the
loss of efficiency in the runtime system.

Flexibility is more important at higher levels of
abstraction!

2 - 39

Object-Oriented Programming

Review of OOP Properties

Classes of Objects - Procedural and data abstraction,
encapsulation, data security.

Messaging - Flexible communication between objects, with
emphasis on the data rather than the operation.

Polymorphism - Allows programming at a higher level of
abstraction.

Inheritance - Makes it easy to extend and reuse objects.

Dynamic Binding - Allows flexibility at runtime.

2 - 40

Object-Oriented Programming

Summary of OOP

1. Object-oriented programming consists of sending
messages to objects.

2. Problem-solving consists of (a) identifying the objects,
(b) identifying the messages associated with the objects,
(c) developing the sequence of messages to objects that
solves the problem.

3. OOP languages generally support classes of objects,
messaging, polymorphism, inheritance, and (preferably)
dynamic binding.

4. The unit of encapsulation is the object, which includes
private data and methods.

2 - 41

Object-Oriented Programming

Summary of OOP (continued)

5. Abstraction is supported by a hierarchy of classes
representing different kinds of objects. A class
description protocol defines the properties of each
abstraction. New abstractions are added by adding new
subclasses.

6. Subclasses inherit the properties of their
superclasses, including private data and methods.

7. Abstraction is further supported by polymorphic
definition of the same message in different classes.

2 - 42

Object-Oriented Programming

References
An Introduction to Object-Oriented Programming, by Timothy Budd,

Addison-Wesley, 1991. An excellent book on OOP, with comparisons

between Objective-C, C++, Object Pascal, and Smalltalk.

Object-Oriented Programming: An Evolutionary Approach, by Brad Cox,

Addison-Wesley, 1987. This book has Objective-C examples, but is

best for background information, not as a reference manual.

Objective-C : Object-Oriented Programming Techniques, by Lewis J.

Pinson & Richard S. Wiener, Addison-Wesley, 1991. A good book for

OOP with Objective-C examples.

An Introduction to Object-Oriented Programming and Smalltalk, by Lewis

J. Pinson & Richard S. Wiener, Addison-Wesley, 1988. Although the

book is about Smalltalk, Chapter 1 has some good general OOP

information that is worth reading.

2 - 43

